Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Sci Rep ; 12(1): 17420, 2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: covidwho-2077108

RESUMO

Deep brain stimulation (DBS) teleprogramming may help reducing travel-related and other financial burdens for patients and maintaining DBS care in special situations. To determine travel-related burdens of DBS patients and explore effects of COVID-19 on DBS care. Travel- and visit-related data of 319 patients were retrospectively analyzed for the first year, five years, and ten years after initiating DBS. Frequencies of in-person and telemedicine visits over the 18-month periods just before and after the outbreak of COVID-19 in Hungary were also compared. Average travel distance during an in-person visit was 415.2 ± 261.5 km, while average travel time was 342.1 ± 199.4 min. Travel costs for the first year, five years, and ten years were 151.8 ± 108.7, 461.4 ± 374.6, and 922.7 ± 749.1 Euros, respectively. Travel distance, age, and type and severity of disease could help identify patients who would particularly benefit from teleprogramming. We detected a significant decrease in the number of visits during COVID-19 pandemic (from 3.7 ± 2.1 to 2.4 ± 2.7; p < 0.001) which mainly resulted from the decreased frequency of in-person visits (3.6 ± 2.0 vs. 1.7 ± 1.8; p < 0.001). Our results support the introduction of DBS teleprogramming in Hungary which could save money and time for patients while maintaining a secure delivery of DBS.


Assuntos
COVID-19 , Estimulação Encefálica Profunda , Humanos , Estimulação Encefálica Profunda/métodos , Viagem , COVID-19/epidemiologia , COVID-19/terapia , Estudos Retrospectivos , Pandemias , Doença Relacionada a Viagens
2.
Arq Neuropsiquiatr ; 80(5 Suppl 1): 105-115, 2022 05.
Artigo em Inglês | MEDLINE | ID: covidwho-2065215

RESUMO

For more than 30 years, Deep Brain Stimulation (DBS) has been a therapeutic option for Parkinson's disease (PD) treatment. However, this therapy is still underutilized mainly due to misinformation regarding risks and clinical outcomes. DBS can ameliorate several motor and non-motor symptoms, improving patients' quality of life. Furthermore, most of the improvement after DBS is long-lasting and present even in advanced PD. Adequate patient selection, precise electric leads placement, and correct DBS programming are paramount for good surgical outcomes. Nonetheless, DBS still has many limitations: axial symptoms and signs, such as speech, balance and gait, do not improve to the same extent as appendicular symptoms and can even be worsened as a direct or indirect consequence of surgery and stimulation. In addition, there are still unanswered questions regarding patient's selection, surgical planning and programming techniques, such as the role of surgicogenomics, more precise imaging-based lead placement, new brain targets, advanced programming strategies and hardware features. The net effect of these innovations should not only be to refine the beneficial effect we currently observe on selected symptoms and signs but also to improve treatment resistant facets of PD, such as axial and non-motor features. In this review, we discuss the current state of the art regarding DBS selection, implant, and programming, and explore new advances in the DBS field.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Estimulação Encefálica Profunda/métodos , Humanos , Doença de Parkinson/tratamento farmacológico , Qualidade de Vida , Resultado do Tratamento
3.
Neuroradiol J ; 35(2): 203-212, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: covidwho-1817078

RESUMO

OBJECTIVE: Observational studies utilising diffusion tractography have suggested a common mechanism for tremor alleviation in deep brain stimulation for essential tremor: the decussating portion of the dentato-rubro-thalamic tract. We hypothesised that directional stimulation of the dentato-rubro-thalamic tract would result in greater tremor improvement compared to sham programming, as well as comparable improvement as more tedious standard-of-care programming. METHODS: A prospective, blinded crossover trial was performed to assess the feasibility, safety and outcomes of programming based solely on dentato-rubro-thalamic tract anatomy. Using magnetic resonance imaging diffusion-tractography, the dentato-rubro-thalamic tract was identified and a connectivity-based treatment setting was derived by modelling a volume of tissue activated using directional current steering oriented towards the dentato-rubro-thalamic tract centre. A sham setting was created at approximately 180° opposite the connectivity-based treatment. Standard-of-care programming at 3 months was compared to connectivity-based treatment and sham settings that were blinded to the programmer. The primary outcome measure was percentage improvement in the Fahn-Tolosa-Marín tremor rating score compared to the preoperative baseline. RESULTS: Among the six patients, tremor rating scores differed significantly among the three experimental conditions (P=0.030). The mean tremor rating score improvement was greater with the connectivity-based treatment settings (64.6% ± 14.3%) than with sham (44.8% ± 18.6%; P=0.031) and standard-of-care programming (50.7% ± 19.2%; P=0.062). The distance between the centre of the dentato-rubro-thalamic tract and the volume of tissue activated inversely correlated with the percentage improvement in the tremor rating score (R2=0.24; P=0.04). No significant adverse events were encountered. CONCLUSIONS: Using a blinded, crossover trial design, we have shown the technical feasibility, safety and potential efficacy of connectivity-based stimulation settings in deep brain stimulation for treatment of essential tremor.


Assuntos
Estimulação Encefálica Profunda , Tremor Essencial , Estimulação Encefálica Profunda/métodos , Tremor Essencial/cirurgia , Tremor Essencial/terapia , Humanos , Estudos Prospectivos , Tálamo/diagnóstico por imagem , Resultado do Tratamento , Tremor/cirurgia
4.
Neuromodulation ; 24(2): 337-342, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: covidwho-1599565

RESUMO

OBJECTIVE: To explore the utility of deep brain stimulation (DBS) telemedicine in the management of patients with movement disorders from January 2019 to March 2020, covering the main period of the COVID-19 outbreak in China. MATERIALS AND METHODS: We obtained data from 40 hospitals around China that employed DBS tele-programming for their outpatients with Parkinson's disease or dystonia from January 2019 to March 2020. Data were obtained on the number and nature of patients' DBS health care service requests, reasons for their requests, the number of DBS telemedicine sessions subsequently completed, safety issues, and the patients' satisfaction with the DBS tele-programing parameter adjustments made. RESULTS: There were 909 DBS tele-programming health service requests (from 196 patients) completed during the study period. The results showed: 1) the number of DBS telemedicine sessions requested and the number of patients examined increased during the COVID-19 outbreak in February and March 2020 when compared with the monthly numbers in 2019; 2) the most common reason for the patients' health service requests was poor symptom control; 3) the most common DBS tele-programming adjustment made was voltage change; 4) overall, most (89%) DBS tele-programming adjustment sessions were experienced by the patients as satisfactory; and 5) significant adverse events and unexpected treatment interruptions caused by connection failure or other hardware- or software-related problems did not occur. CONCLUSIONS: DBS telemedicine could have a unique role to play in maintaining the delivery of DBS treatment and medical care to outpatients with movement disorders during the COVID-19 pandemic.


Assuntos
COVID-19 , Estimulação Encefálica Profunda/métodos , Transtornos dos Movimentos/terapia , Pandemias , Telemedicina/métodos , Adulto , Idoso , Assistência Ambulatorial , China , Estimulação Encefálica Profunda/efeitos adversos , Estimulação Encefálica Profunda/estatística & dados numéricos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Satisfação do Paciente , Telemedicina/estatística & dados numéricos
5.
Neurosurg Focus ; 49(6): E11, 2020 12.
Artigo em Inglês | MEDLINE | ID: covidwho-953947

RESUMO

OBJECTIVE: The ongoing coronavirus disease 2019 (COVID-19) pandemic has considerably affected the delivery of postoperative care to patients who have undergone deep brain stimulation (DBS) surgery. DBS teleprogramming technology was developed and deployed in China before the COVID-19 outbreak. In this report, the authors share their experiences with telemedical DBS treatment of patients with psychiatric disorders during the COVID-19 outbreak. METHODS: Four patients (2 with obsessive-compulsive disorder, 1 with major depressive disorder, and 1 with anorexia nervosa) underwent DBS surgery at Ruijin Hospital and received continuous postoperative DBS telemedicine case management from January 2020 to July 2020. DBS teleprogramming, individualized psychological support, and medical consultations were provided via the authors' DBS telemedicine platform, which also incorporated a synchronous real-time video communication system. RESULTS: Forty-five DBS telemedicine sessions were conducted; there was no unexpected loss of network connection during the sessions. Of these, 28 sessions involved DBS teleprogramming. Adjustments were made to the stimulation voltage, frequency, pulse width, and contact site in 21, 12, 9, and 9 sessions, respectively. Psychological support and troubleshooting were provided during the remaining telemedicine sessions. Modest to substantial clinical improvements after DBS surgery were observed in some but not all patients, whereas stimulation-related side effects were reported by 2 patients and included reversible sleep and mood problems, headache, and a sensation of heat. CONCLUSIONS: DBS telemedicine seems to offer a feasible, safe, and efficient strategy for maintaining the delivery of medical care to psychiatric patients during the COVID-19 outbreak. The authors propose that implementation of a comprehensive DBS telemedicine system, which combines DBS teleprogramming with psychological counseling, medical consultations, and medication prescriptions and delivery, could be an efficient and effective approach to manage the mental health and quality of life of patients with psychiatric disorders during future local or global public health crises.


Assuntos
Anorexia Nervosa/cirurgia , COVID-19/epidemiologia , Estimulação Encefálica Profunda/métodos , Transtorno Depressivo Maior/cirurgia , Transtorno Obsessivo-Compulsivo/cirurgia , Telemedicina/métodos , Anorexia Nervosa/diagnóstico , Anorexia Nervosa/psicologia , Estimulação Encefálica Profunda/normas , Transtorno Depressivo Maior/diagnóstico , Transtorno Depressivo Maior/psicologia , Seguimentos , Humanos , Transtornos Mentais , Transtorno Obsessivo-Compulsivo/diagnóstico , Transtorno Obsessivo-Compulsivo/psicologia , Estudos Retrospectivos , Telemedicina/normas , Resultado do Tratamento
6.
Neuromodulation ; 24(2): 331-336, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: covidwho-917754

RESUMO

OBJECTIVES: Deep brain stimulation (DBS) is a well-established therapy for the management of patients with advanced Parkinson's disease and other movement disorders. Patients implanted with DBS require life-long management of the medical device as well as medications. Patients are often challenged to frequently visit the specialized DBS centers and such challenges are aggravated depending on geography, socioeconomic factors, and support systems. We discuss the need for digital health solutions to overcome these barriers to better and safely take care of patients, especially in the current COVID-19 pandemic. MATERIALS AND METHODS: A review of the literature was conducted for technology and logistics necessary in forming a digital health program. RESULTS: Digital health encounters can take place in both a synchronous and asynchronous manner. Factors involving patients include cognitive capacity, physical safety, physical capacity, connectivity, and technological security. Physician factors include examining the patient, system diagnostics, and adjusting stimulation or medications. Technology is focused on bridging the gap between patient and physician through integrating the DBS lead, implantable pulse generator (IPG), programmer, novel devices/applications to grade motor function, and teleconference modalities. CONCLUSIONS: For patients with Parkinson's disease, digital health has the potential to drastically change the landscape after DBS surgery. Furthermore, technology is fundamental in connectivity, diagnostic evaluation, and security in order to create stable and useful patient-focused care.


Assuntos
COVID-19 , Estimulação Encefálica Profunda/métodos , Pandemias , Doença de Parkinson/terapia , Telemedicina , Humanos
7.
J Neurol ; 268(4): 1295-1303, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: covidwho-891907

RESUMO

INTRODUCTION: Deep brain stimulation (DBS) is an effective treatment for patients with Parkinson's disease (PD). On time follow-up and timely programing of symptoms are important measures to maintain the effectiveness of DBS. Due to the highly contagious nature of 2019-nCoV, patients were quarantined. With the help of Internet technologies, we continued to provide motor and non-motor symptom assessment and remote programming services for postsurgical PD-DBS patients during this extraordinary period. METHODS: A retrospective analysis was performed on postsurgical PD-DBS patients who could not come to our hospital for programming due to the impact of the 2019-nCoV. The differences between the pre- and post-programming groups were analyzed. We designed a 5-level Likert rating scale to evaluate the effects and convenience of the remote programming and Internet self-evaluation procedures. RESULTS: Of the 36 patients engaged in the remote programming, 32 patients met the inclusion criteria. Four of the 32 patients set initiated stimulation parameters, and the other 28 patients had significant improvement in UPDRS-III. Nearly all the 28 patients were satisfied with the effect of the remote programming. Most of the patients were willing to use remote programming again. CONCLUSION: Remote programming based on the online evaluation of patient's symptoms can help improve motor symptoms of postsurgical DBS patients with PD during the quarantine period caused by 2019-nCoV.


Assuntos
COVID-19 , Estimulação Encefálica Profunda/métodos , Doença de Parkinson/terapia , Telemedicina/métodos , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Quarentena , Estudos Retrospectivos , SARS-CoV-2
8.
Neurosurgery ; 88(2): 349-355, 2021 01 13.
Artigo em Inglês | MEDLINE | ID: covidwho-855180

RESUMO

BACKGROUND: Deep brain stimulation (DBS) is a standard of care treatment for multiple neurologic disorders. Although 3-tesla (3T) magnetic resonance imaging (MRI) has become the gold-standard modality for structural and functional imaging, most centers refrain from 3T imaging in patients with DBS devices in place because of safety concerns. 3T MRI could be used not only for structural imaging, but also for functional MRI to study the effects of DBS on neurocircuitry and optimize programming. OBJECTIVE: To use an anthropomorphic phantom design to perform temperature and voltage safety testing on an activated DBS device during 3T imaging. METHODS: An anthropomorphic 3D-printed human phantom was constructed and used to perform temperature and voltage testing on a DBS device during 3T MRI. Based on the phantom assessment, a cohort study was conducted in which 6 human patients underwent MRI with their DBS device in an activated (ON) state. RESULTS: During the phantom study, temperature rises were under 2°C during all sequences, with the DBS in both the deactivated and activated states. Radiofrequency pulses from the MRI appeared to modulate the electrical discharge from the DBS, resulting in slight fluctuations of voltage amplitude. Six human subjects underwent MRI with their DBS in an activated state without any serious adverse events. One patient experienced stimulation-related side effects during T1-MPRAGE scanning with the DBS in an ON state because of radiofrequency-induced modulation of voltage amplitude. CONCLUSION: Following careful phantom-based safety testing, 3T structural and functional MRI can be safely performed in subjects with activated deep brain stimulators.


Assuntos
Estimulação Encefálica Profunda , Imageamento por Ressonância Magnética/efeitos adversos , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas , Idoso , Encéfalo/fisiologia , Estudos de Coortes , Estimulação Encefálica Profunda/métodos , Eletrodos Implantados , Feminino , Humanos , Imageamento por Ressonância Magnética/instrumentação , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Impressão Tridimensional , Temperatura
9.
J Parkinsons Dis ; 10(3): 903-910, 2020.
Artigo em Inglês | MEDLINE | ID: covidwho-116462

RESUMO

Most medical centers are postponing elective procedures and deferring non-urgent clinic visits to conserve hospital resources and prevent spread of COVID-19. The pandemic crisis presents some unique challenges for patients currently being treated with deep brain stimulation (DBS). Movement disorder (Parkinson's disease, essential tremor, dystonia), neuropsychiatric disorder (obsessive compulsive disorder, Tourette syndrome, depression), and epilepsy patients can develop varying degrees of symptom worsening from interruption of therapy due to neurostimulator battery reaching end of life, device malfunction or infection. Urgent intervention to maintain or restore stimulation may be required for patients with Parkinson's disease who can develop a rare but potentially life-threatening complication known as DBS-withdrawal syndrome. Similarly, patients with generalized dystonia can develop status dystonicus, patients with obsessive compulsive disorder can become suicidal, and epilepsy patients can experience potentially life-threatening worsening of seizures as a result of therapy cessation. DBS system infection can require urgent, and rarely emergent surgery. Elective interventions including new implantations and initial programming should be postponed. For patients with existing DBS systems, the battery status and electrical integrity interrogation can now be performed using patient programmers, and employed through telemedicine visits or by phone consultations. The decision for replacement of the implantable pulse generator to prevent interruption of DBS therapy should be made on a case-by-case basis taking into consideration battery status and a patient's tolerance to potential therapy disruption. Scheduling of the procedures, however, depends heavily on the hospital system regulations and on triage procedures with respect to safety and resource utilization during the health crisis.


Assuntos
Betacoronavirus , Infecções por Coronavirus/terapia , Estimulação Encefálica Profunda/normas , Pandemias/prevenção & controle , Doença de Parkinson/terapia , Pneumonia Viral/terapia , Guias de Prática Clínica como Assunto/normas , COVID-19 , Infecções por Coronavirus/epidemiologia , Estimulação Encefálica Profunda/métodos , Gerenciamento Clínico , Contaminação de Equipamentos/prevenção & controle , Humanos , Neuroestimuladores Implantáveis/normas , Doença de Parkinson/epidemiologia , Pneumonia Viral/epidemiologia , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA